Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Rob Auton Syst ; 148: 103917, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1482947

ABSTRACT

The coronavirus disease 2019 (COVID-19) outbreak has increased mortality and morbidity world-wide. Oropharyngeal swabbing is a well-known and commonly used sampling technique for COVID-19 diagnose around the world. We developed a robot to assist with COVID-19 oropharyngeal swabbing to prevent frontline clinical staff from being infected. The robot integrates a UR5 manipulator, rigid-flexible coupling (RFC) manipulator, force-sensing and control subsystem, visual subsystem and haptic device. The robot has strength in intrinsically safe and high repeat positioning accuracy. In addition, we also achieve one-dimensional constant force control in the automatic scheme (AS). Compared with the rigid sampling robot, the developed robot can perform the oropharyngeal swabbing procedure more safely and gently, reducing risk. Alternatively, a novel robot control schemes called collaborative manipulation scheme (CMS) which combines a automatic phase and teleoperation phase is proposed. At last, comparative experiments of three schemes were conducted, including CMS, AS, and teleoperation scheme (TS). The experimental results shows that CMS obtained the highest score according to the evaluation equation. CMS has the excellent performance in quality, experience and adaption. Therefore, the proposal of CMS is meaningful which is more suitable for robot-sampling.

2.
IEEE Robot Autom Lett ; 7(2): 1856-1863, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1132781

ABSTRACT

The outbreak of novel coronavirus pneumonia (COVID-19) has caused mortality and morbidity worldwide. Oropharyngeal-swab (OP-swab) sampling is widely used for the diagnosis of COVID-19 in the world. To avoid the clinical staff from being affected by the virus, we developed a 9-degree-of-freedom (DOF) rigid-flexible coupling (RFC) robot to assist the COVID-19 OP-swab sampling. This robot is composed of a visual system, UR5 robot arm, micro-pneumatic actuator and force-sensing system. The robot is expected to reduce risk and free up the clinical staff from the long-term repetitive sampling work. Compared with a rigid sampling robot, the developed force-sensing RFC robot can facilitate OP-swab sampling procedures in a safer and softer way. In addition, a varying-parameter zeroing neural network-based optimization method is also proposed for motion planning of the 9-DOF redundant manipulator. The developed robot system is validated by OP-swab sampling on both oral cavity phantoms and volunteers.

SELECTION OF CITATIONS
SEARCH DETAIL